
Future Generation Computer Systems () –

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

FaceDCAPTCHA: Face detection based color image CAPTCHA
Gaurav Goswami a, Brian M. Powell b, Mayank Vatsa a,∗, Richa Singh a, Afzel Noore b

a Indraprastha Institute of Information Technology (IIIT) Delhi, India
b Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA

a r t i c l e i n f o

Article history:
Received 1 February 2012
Received in revised form
29 July 2012
Accepted 27 August 2012
Available online xxxx

Keywords:
CAPTCHA
Face detection
Web security

a b s t r a c t

With data theft and computer break-ins becoming increasingly common, there is a great need for
secondary authentication to reduce automated attacks while posing a minimal hindrance to legitimate
users. CAPTCHA is one of the possible ways to classify human users and automated scripts. Though text-
based CAPTCHAs are used inmany applications, they pose a challenge due to language dependency. In this
paper, we propose a face image-based CAPTCHA as a potential solution. To solve the CAPTCHA, usersmust
correctly identify visually-distorted human faces embedded in a complex background without selecting
any non-human faces. The proposed algorithm generates a CAPTCHA that offers better human accuracy
and lower machine attack rates compared to existing approaches.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Completely Automated Public Turing Test to Tell Computers and
Humans Apart or CAPTCHA is designed to distinguish between
genuine users and automated scripts [1]. The objective of CAPTCHA
is to ensure proper service to genuine users while minimizing
the attacks by bots. CAPTCHAs are being used for several services
including web and financial services, and to provide security
against malicious attacks. Research in CAPTCHA has focused on
developing tests that are easy for humans to solve and difficult for
automated approaches. Several kinds of challenges can be posed
by automatic scripts. For instance, scripts or bots can put a heavy
load on the servers and enforce aDoS attack, generatemultiple fake
accounts (in case of registration forms) which are not profitable
to both the service provider and the client [2]. Existing CAPTCHA
algorithms can be broadly grouped into three classes: (1) text-
based, (2) image-based, and (3) video- and audio-based CAPTCHAs.

Text-based CAPTCHAs are the most common and widely used
form. These CAPTCHAs require the users to decipher text that
has been visually distorted and rendered as an image. AltaVista
CAPTCHA, one of the first text CAPTCHAs, was taken from an
optical character recognition (OCR) manual. Distortions were in-
corporated that were known to reduce OCR accuracy [3]. GIMPY
CAPTCHA, similar to the AltaVista CAPTCHA [3,4], used English dic-
tionarywords. However,Mori andMalik showed that it can be bro-
ken and an attack rate of 92% was achieved against EZ-GIMPY [5],

∗ Corresponding author.
E-mail addresses: gauravgs@iiitd.ac.in (G. Goswami),

brian.powell@mail.wvu.edu (B.M. Powell), mayank@iiitd.ac.in (M. Vatsa),
rsingh@iiitd.ac.in (R. Singh), afzel.noore@mail.wvu.edu (A. Noore).

a variant of GIMPY. Further variation by Moy et al. [6] boosted the
attack rate to 99%. A major shortcoming of these early approaches
was vulnerability to segmentation, where each character could be
identified in isolation. This greatly simplifies attacks using opti-
cal character recognition techniques. One solution was proposed
to design the CAPTCHA such that one-to-one mapping between
characters and outlines was distorted. For example, two charac-
ters might be connected or one might be split into multiple parts.
In the ScatterType CAPTCHA, for example, individual characters
were segmented into pieces and then systematically scattered so
that they are difficult to reassemble [7].MegauploadCAPTCHApro-
posed to use overlapping characters whereasMSN CAPTCHA intro-
duced lines connecting individual characters; however, both have
high attack rates of 78% or more [3,8–10]. BaffleText’s approach
of rendering a mottled black-and-white background and then per-
forming different masking operations with overlapping text was
more successful, being attacked in only 25% of the attempts [11].
Different masking techniques similar to BaffleText have subse-
quently been incorporated into other CAPTCHAs [12].

Rather than designing tests to be non-recognizable via OCR,
some CAPTCHAs have taken an approach of using handwritten
text images already known to fail optical character recognition. A
database of text images obtained from handwrittenmail addresses
that could not be detected automatically were used in such
CAPTCHAs. When full city names were used, humans were able
to identify the word 100% of the time but the computer success
rate was about 9% [13]. Similarly, reCAPTCHA was designed using
the text images scanned from book digitization projects [12]. In
reCAPTCHA, users were presented with two text images (one of a
word that was unknown and one whose text had been previously

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.08.013

http://dx.doi.org/10.1016/j.future.2012.08.013
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:gauravgs@iiitd.ac.in
mailto:brian.powell@mail.wvu.edu
mailto:mayank@iiitd.ac.in
mailto:rsingh@iiitd.ac.in
mailto:afzel.noore@mail.wvu.edu
http://dx.doi.org/10.1016/j.future.2012.08.013

2 G. Goswami et al. / Future Generation Computer Systems () –

Fig. 1. Example of existing text CAPTCHAs.

Fig. 2. Example of existing image CAPTCHAs.

determined) and asked to enter both words. The previously-
known word served as the test while the currently-unknown
word’s results were stored to help identify that word for future
use. Researchers have shown that the success attack rate for
reCAPTCHA is between 5% and 30% [14]. Examples of existing text
CAPTCHAs are shown in Fig. 1.

As an alternative to text, several CAPTCHA applications utilize
image classification or recognition tasks as part of their test [15].
One basic image-based CAPTCHA is ESP-PIX in which a collection
of images are shown and the user has to select a description from a
predefined list of categories [16,17]. KittenAuth, a variant of image
CAPTCHA, poses images of cats to the user [18]. Asirra is similar to
KittenAuth and uses a closed database to source the images [19].
These image-based CAPTCHAs demonstrate a commonweakness—
a small number of possible solutions for which random guessing
can have a high likelihood of success. A number of other CAPTCHAs
rely upon composites of multiple embedded images rather than
discrete images as with the previous models. The Scene Tagging
CAPTCHA requires identifying relationships and relative placement
of different images [20]. On the other hand, MosaHIP requires
dragging descriptors and dropping them on top of embedded
images in a collage [21]. Recently, a new design technique has
been proposed that uses recognition of geometric patterns. The
IMAGINATION CAPTCHA combines geometric shape recognition
with categorization in a two-step process. Users have to first

mark the center point of an embedded image and then select
an appropriate category based on a predefined list to describe
that image [22]. The results show a human success rate of
approximately 70% with a machine random guess rate of about
0.0005% [22]. Fig. 2 shows a sample of existing image CAPTCHAs.

Other than text and image CAPTCHAs, video and audio
CAPTCHAs have also been proposed. Video-based CAPTCHAs func-
tion by posing the tagged videos with descriptive text. In the tests
by Kluever, humans achieved an accuracy of 90% in identifying
video descriptionswhilemachine attack rates were approximately
13% [3,23]. To provide access for visually-impaired users, audio
CAPTCHAs are used as an alternative to standard visual CAPTCHAs.
These work by playing a recording of words or letters which users
are then asked to enter. However, these CAPTCHAs have high com-
puter attack rates using a speech recognition approach [24–26].
Specifically, the audio CAPTCHAs used by Digg and Google have a
successful attack rate of about 70% [24].

1.1. Research contributions

Making CAPTCHAs resilient to attacks by advanced scripts in-
creases the complexity of the tests and language dependency [15].
In some cases, the difficulty has reached levels that are hard even
for humans to solve. Since imageCAPTCHAsprovide language inde-
pendence and improved user convenience compared to traditional

G. Goswami et al. / Future Generation Computer Systems () – 3

approaches, recent research has focused on developing image-
based CAPTCHAs [18,19,22]. This research presents a color image
CAPTCHA that uses complex face detection as a test. The proposed
CAPTCHA is a successor of previously proposed face image-based
CAPTCHA [27]. In the preliminary version [27], up to five human
and non-human face images were selected and embedded on a
complex background to create an image CAPTCHA. To solve the
CAPTCHA, users had to select all embedded human faces without
any false clicks. On a large scale evaluation,we achieved an average
accuracy of 80% by human userswhereas face detection algorithms
achieved 11% accuracy on correctly breaking the CAPTCHA.

In this paper, we present FaceDCAPTCHA—face detection based
CAPTCHA, in which four to six distorted face/non-face images are
embedded in a complex background and a user has to correctly
mark the center of all the face images within a defined tolerance.
While generating a CAPTCHA, the proposed algorithm leverages
the limitations of state-of-the-art automatic face detection algo-
rithms. The CAPTCHA is created in a way that while it is difficult
for automatic face detection algorithms to break, it is easy for hu-
man users to solve. Also, by incorporating human response in the
parameter optimization process, the performance of the FaceD-
CAPTCHA is enhanced both in terms of higher human performance
and lower attack rates by automatic algorithms. The next sec-
tion provides the details of the proposed algorithm and Section 3
presents the experimental results and key observations.

2. The proposed FaceDCAPTCHA algorithm

Even after decades of research in face detection, there are sev-
eral challenges in designing effective and accurate face detection
algorithms. For example, as shown in Fig. 3, combinations of ro-
tation, noise, blur, background, and occluding key facial features
such as eyes andmouth can cause face detection algorithms to fail.
On the other hand, the humanmind is very effective in segmenting
natural faces and one can easily detect such faces evenwith a com-
plex background and partial/hidden features. Further, automatic
face detection algorithms detect cartoon faces as genuine whereas
humans can distinguish between genuine faces and cartoon or fake
face images. The proposed FaceDCAPTCHA algorithm utilizes the
limitations of automatic algorithms to create image CAPTCHAs. In
other words, the proposed algorithm is based on optimizing sets of
parameters on which standard face detection algorithms fail but
humans can succeed. The process of using FaceDCAPTCHA is as
follows:

• The face CAPTCHA image containing distorted and occluded
genuine face images and fake images on a random background
is shown to a user.

• The user marks the approximate center of all genuine face im-
ages present in the CAPTCHA.

• If all the responses are correct (i.e. approximate center of all
genuine faces are marked correctly) then the test is solved oth-
erwise not.

The hypothesis is that humans can easily pass the test whereas,
with carefully designed FaceDCAPTCHA, an automatic program
cannot solve it using the state-of-art face detection algorithms.

2.1. Generating FaceDCAPTCHA

The FaceDCAPTCHA generation process can be written as,

C = F(φ) (1)

where, F is the function applied on a set of distortion parameters,
φ, to generate the image CAPTCHA C . The function, F , is a series
of image processing operations that are used to generate a secure
and robust CAPTCHA. The parameters of these image processing

Fig. 3. Face detection algorithms are not able to detect genuine faces due to noise,
rotation, background, and hidden facial features.

operations can be adjusted according to the desired level of com-
plexity. In the proposed approach, an adversarial gradient learn-
ing technique is used to learn the range of parameters for which
humans can solve the CAPTCHA but not the adversary (i.e. au-
tomatic algorithms). The design of FaceDCAPTCHA generation
algorithm can be divided into two stages: estimating CAPTCHA
parameters and CAPTCHA generation using trained parameters.

Estimating CAPTCHA parameters: Since CAPTCHA generation
is dependent on several parameters, the training stage involves
learning the useful sets of parameters. Here, a set of parameters
is said to be useful for CAPTCHA generation if, during the
process, humans can successfully solve the CAPTCHA but the
adversary/automatic face detection algorithm fails to detect any of
the genuine faces. Let H be the human response and Ad represents
the adversary’s response, the set of parameters is useful if

φu = Train(C=F(φi))
(H = 1, Ad = 0). (2)

Here, H = 1 represents the correct human response to solve
the CAPTCHA and Ad = 0 represents the incorrect response by
the adversary. There can be several parameters, φi, however only
those parameters, φu, are chosen that satisfy the condition given in
Eq. (2). Parameters associated with other conditions, i.e. (H = 1,
Ad = 1), (H = 0, Ad = 1), and (H = 0, Ad = 0) are not useful.
Further, Train represents parameter learning in a gradient descent
manner. Let Eh,Ad be the objective or error function that minimizes
the error caused by four conditions associated with H and Ad, i.e.,

EH,Ad(φt) =

0 if H = 1 and Ad = 0
1 otherwise. (3)

In gradient descent, optimal parameters are obtained using Eqs.
(4) and (5).

▽ EH,Ad(φt) =
∂EH,Ad(φt)

∂φ
(4)

φt+1 = φt − η ▽ EH,Ad(φt). (5)

Here, ▽EH,Ad(φt) represents the gradient of error function at the
tth learning iteration and η is the learning rate that controls
the convergence of parameter learning. Note that this learning
procedure involves human response (for H) as well as adversarial
response for automatic face detector (Ad) and therefore converges
to the case where humans can solve the CAPTCHA but not the
adversarial algorithm.

4 G. Goswami et al. / Future Generation Computer Systems () –

Fig. 4. Illustrating the effect of (a) stripes, (b) strikeout, (c) rotation, and (d)
blending with the background.

In the FaceDCAPTCHA design, we choose the following param-
eters (and related operations):

• The first parameter is the total number of images, both genuine
and fake faces, and is represented as ntotal. Genuine faces
are images of real humans collected from different publicly
available face databases. Fake faces are images of cartoons and
other objects known to generate false positives by automatic
face detectors.

• The number of genuine face images in a CAPTCHA, represented
as nface, is the second parameter. In a given CAPTCHA,

ntotal = nface + nfake (6)

where nfake is the number of fake images. For a given CAPTCHA,
we only need to define ntotal and nface. Also, randomly changing
these parameters in each (new) CAPTCHA can change the
content such that only a genuine human user can respond
correctly.

• The third parameter, CAPTCHA background B, is important
to make sure that background has randomness to confuse
automatic face detection algorithms. B contains parameters
such as the number of background shapes to be generated (ns),
the number of dilation operations to be adopted (nd), and the
number of random portions to be placed (np).

• Location (x, y) of each constituent image is an important factor.
With random location, the segmentation is more difficult than
if a static location scheme is used.

• Next, five distortion operations are applied as follows:

– Stripes of three to six pixels width are applied on some
constituent images (faces and fake faces) in the CAPTCHA.
Note that it is not necessary that this operation is applied
uniformly on all face or fake face images in a CAPTCHA. In
this operation, the parameters T1 are the number of stripes
and the width of stripes, b. An example of this operation is
shown in Fig. 4(a).

– Strikeout operation, as shown in Fig. 4(b), is used to cover
key facial features such as eyes and mouth with some trans-
parency. Transparency parameter, T2, is set such that human
users can visualize the facial features but it is challenging for
the adversary.

– Rotate operation [28] is used to rotate the constituent face
and fake images with θ0 angle (Fig. 4(c)). Since, for each con-
stituent image, θ may be different, the parameter is repre-
sented in vector form such that Θ = {θi} and i = 1,
2, . . . , ntotal.

– Blending operation [28] is used to smoothly blend the con-
stituent face and fake images with the background, as shown
in Fig. 4(d). In this operation, strength of blending Sb is used
as the parameter which controls the degree of blending.

– Noise addition. Using the above mentioned parameters and
operations, the CAPTCHA image is prepared and then noise
is added on the complete CAPTCHA image. In this operation,
there are three parameters: nmin and nmax are used as the
minimum and maximum percentage of image pixels for ap-
plication of noise effect and the type parameter is used to se-
lect the type of noise to be applied (additive, multiplicative
or salt & pepper). Collectively, these parameters are referred
to as ns.

As shown in Fig. 5 and the steps below, these parameters and
operations are used to generate the FaceDCAPTCHA.

Step 1: From a set of genuine and false face images, randomly
select nface ≥ 2 (i.e., the number of face images) and nfake ≥ 1
(i.e., the number of fake images).
Step2: Each constituent image (both genuine and fake) is processed
using the distortion operations (black stripes, strikeouts, and
rotate). Images are randomly rotated by θ0 and using parameters
T1 and T2, black stripes and strikeout are applied.
Step 3: Each constituent face image is placed at a randomly selected
location (x, y) on the CAPTCHA background B. To generate the
background, random patches for constituent face and fake images
are selected. The background image is then created using the
following two approaches:

• Random colors: In this approach, the background image is
created using random shapes such as circles, squares, and
crosses with randomly chosen sizes and colors. These shapes
are then pasted on the canvas at random co-ordinates to
generate the final background image. This background image is

Fig. 5. Illustrating the steps involved in the proposed FaceDCAPTCHA algorithm.

G. Goswami et al. / Future Generation Computer Systems () – 5

Fig. 6. Example background generated using the random colors approach.

Fig. 7. Example background generated using the random portions approach.

then dilated before being used for CAPTCHA generation. Fig. 6
shows a sample background generated using this approach.

• Random portions: In this approach, the face images selected for
generating a particular CAPTCHA are used for its background
also. Parts of the face images are randomly picked and stored.
These parts are then used along with the random colors
algorithm to create the background image. These parts are
pasted at random co-ordinates on the background image to
include skin color patches on the background that can be useful
in confusing skin color based detection algorithms. Fig. 7 shows
a sample background generated using this approach.

Step 4: At the end, one of the three noise operations {additive, mul-
tiplicative, or salt & pepper}, is applied on the complete CAPTCHA
image to generate the final CAPTCHA.

The parameter optimization requires human input as well as a
response by automatic face detection algorithms (Eq. (2)). As part
of the parameter learning process, a set of 17,000 CAPTCHA images
is generated. The images covered 17 different groups of parameter
settings and each grouphas 10 different sets. Therefore, overall, the
training is performed with 170 sets of parameters. Furthermore,
responses fromover 1300 undergraduate students atWest Virginia
University and IIIT-Delhi collected over a period of threeweeks are
used for training the CAPTCHA algorithm. Based on their response,
out of the 170 sets of parameters, the 10 best-performing sets are
used for generating the CAPTCHAs for testing.
CAPTCHA generation using training parameters: Test CAPTCHAs are
generated using the best-performing parameter sets (obtained
from training) and the four steps described earlier. Fig. 8 shows
some FaceDCAPTCHAs and detailed results are presented in
Section 3.

2.2. Implementation details

For better understanding and reproducibility, Algorithms 1–8
provide the pseudo-code of the proposed approach (Appendix).
The algorithm is developed in C# programming language using
Intel’s OpenCV library. The main pseudo-code to generate the
CAPTCHA is presented in Algorithm 1, CreateCaptcha(φ). Some
parameters are initialized, heuristically, for faster convergence,
specifically, nface ≥ 2 and ntotal ≥ 4. During training different
parameter sets are created with all the combinations, and opti-
mal parameters are estimated using gradient descent algorithm
(as described earlier). Further, the OpenCV Haar face detection al-
gorithm is used an an adversary during training, as explained in
Algorithm 8.

3. Experimental results and analysis

The proposed FaceDCAPTCHA is evaluated with over 1300
human users and the performance is comparedwith the automatic
face detection algorithm. This section presents the description of
images used to generate the CAPTCHA, experimental protocol, and
key results.

3.1. Database and protocol

Generating the CAPTCHA images requires human face and
cartoon face images. For experimental evaluation,wehave selected
about 1800 face images from the LFW face database [29] and
300 cartoon images (from photobucket.com). The cartoon images
are chosen so that they generate false positives for automatic
detection algorithms while they are easy to detect for humans.
Each of these images are detected using OpenCV’s face detector.
60% of the images are used for FaceDCAPTCHA training and the
remaining 40% unseen images are used for testing. For human
evaluation, about 1300 volunteers,mostly first year undergraduate
students in Science, Mathematics, Arts, and Engineering streams
from WVU and IIIT-Delhi contributed to the training and testing
of FaceDCAPTCHA. Haar face detector, Google’s Picasa, and a
commercial face detector are used as the three adversaries to
evaluate the robustness of the generated CAPTCHAs.

In both training and testing, each CAPTCHA is evaluated 4–10
times by different human users and once by each automatic
face detection algorithm. Therefore, we can compute the average
accuracy for human responses (across all CAPTCHAs) using the
following equation,

Accuracy =
Total number of correct responses

Total number of responses
× 100 (7)

where, a correct response means that in a given CAPTCHA,
approximate center of all constituent genuine faces are correctly
marked.

3.2. Analysis

With different settings during training, human success rates
range from 64% to 86% across various sets. It is observed that the
sets with lower computer attack rates also have lower human
success rates. Overall, the average success rate for the training
phase is 66.81%. It is also observed that many individuals find
it difficult to distinguish between actual human faces and comic
faces. Users frequentlymark the non-human faces as actually being
human; after distortions are applied, the life-like images easily
become indistinguishable. Based on this finding, the rendered face

6 G. Goswami et al. / Future Generation Computer Systems () –

Fig. 8. Samples of FaceDCAPTCHA.

Fig. 9. Sample of rendered images that are removed after the training process.

images (as shown in Fig. 9) were removed from the set of fake
images. The black stripes placed across some images occluded key
facial features and greatly hindered correct recognition; the higher
the number of bars and spaces covered, the less likely humans are
able to correctly identify the image. This is especially true when
stripes are combined with greater transparency on the embedded
images so that more background is visible through the image.

After the training phase, responses from human users and au-
tomatic algorithms are used to optimize the CAPTCHA generation
settings. With optimized parameters, human tests are performed
using the final set of 500 CAPTCHA images. The results computed
with over 1300 volunteers provide human accuracy of 92.47%. The
performance improvements can largely be attributed to the de-
crease of blending effect on embedded images and addition of
noise. In the CAPTCHAs used for testing, embedded images are gen-
erally not obscured by the background. Also, the stripes and strike-
outs are made translucent as opposed to completely opaque. The
reduced use of black stripes to obscure the embedded images also
eased the detection process for humans. Key observations are as
follows:

• While designing FaceDCAPTCHA, we have considered several
image processing operations such as noise, strikeout, stripes,
blur, warp, dilation, and erosion as candidate distortions.
However, distortions such as blur, dilation, erosion, and warp
do not affect automatic face detection performance. Since
the objective is to reduce the performance of automatic face
detection algorithms while maximizing the human detection
performance, the operations that reduce the performance
of automatic detection algorithm by over 50% but do not
affect human face recognition performance are selected. In the
experiments, it is observed that stripes and strikeouts have

maximum effect on the performance of automatic algorithms
followed by rotation, blending with background, and noise.

• Human users have to mark the approximate center of genuine
images. In general, users are not very accurate and therefore
a tolerance is provided. During the training stage, evaluation
is performed for different tolerance values and it is observed
that a tolerance of 80 × 80 with embedded face images of size
100× 100 provides the best human accuracy and still the three
automatic face detection algorithms are unable to break the
FaceDCAPTCHA.

• To analyze the effect of distortions used during CAPTCHA gen-
eration, 11,000 responses are collected from 1300 volunteers.
For each distortion, 100 CAPTCHAs are generated totaling 500
CAPTCHAs. Note that in this experiment, only one distortion
is used in a CAPTCHA, i.e., if rotation is present in the image,
other distortions are not applied on that particular image. Next,
the combination of two distortions is also analyzed. With this
setup, 100 CAPTCHAs per combination are used, totaling 1000
CAPTCHAs (5C2). The average human success rate for (the above
mentioned) 1500 CAPTCHAs is computed and the results in
Tables 1 and 2 show that human users can identify face im-
ageswith all the operations except blendingwith parameter 0.9
(i.e., more weight on the background).

• In the testing phase with 500 CAPTCHAs, all the volunteers
provided responses for 5–12 CAPTCHAs; with a total of over
6000 responses. Also, at least six different volunteers have
attempted to solve every CAPTCHA. It is observed that all
500 test CAPTCHAs are successfully solved by at least four
volunteers and therewere 458 unsuccessful attempts out of the
total 6082. This shows that FaceDCAPTCHA has a high human
success rate.

• The performance of automatic face detection algorithms is
also computed for the same 500 CAPTCHAs and the results
show that FaceDCAPTCHA is resilient to automatic algorithms.
Picasa yields 0% true positive rates for genuine face images
and was therefore not able to successfully solve even a single
CAPTCHA.Haar cascade detector included in theOpenCV library
is applied on the images after applying full 360° rotation on
the images (in steps of 2° at a time) with various parameters
and configurations. Haar detected faces in two CAPTCHAs, with
one true positive and three false positives in each. Thus, even

G. Goswami et al. / Future Generation Computer Systems () – 7

Table 1
Effect of individual distortions on the human performance.

Distortion Parameter Accuracy (%)

Stripes 4 pixel width 100
8 pixel width 100

Strike-out Eye 100
Mouth 100

Rotate
0°–45° 100
46°–135° 100
136°–225° 100

Blending
0.1 (less blend) 100
0.5 100
0.9 (more blend) 27

Noise
Additive 100
Multiplicative 100
Salt and pepper 100

the Haar face detector could not detect any CAPTCHA correctly.
A similar result of 0% is obtained with a commercial face
detector.

• Image CAPTCHAs such as IMAGINATION (click test), Asirra,
and ARTiFACIAL [30] have been attacked by automated
approaches [31]. Zhu et al. [31] designed an algorithm for
breaking image CAPTCHA and reported an attack accuracy of
74% on IMAGINATION (click test) and 18% for ARTiFACIAL. On
applying the same attack approach on 500 CAPTCHAs generated
using the proposed CAPTCHA, it yields an accuracy of 0%
successful attack rate. The attack algorithm was unable to find
all the genuine faces in any of the FaceDCAPTCHA images.

• For the random guess attack, i.e. an automatic algorithm
randomly guessing the response, we calculate the probability
of successfully breaking the FaceDCAPTCHA. Based on the
CAPTCHA design, there are 400 × 300 = 120,000 pixels
and there are three cases for correct responses (under the
assumption that 80 × 80 tolerance is given to random guesses
also). The probability for breaking the CAPTCHA using a random
guess is computed below.
– Case 1: Two genuine face images in the CAPTCHA 2×80×80

120,000 ×

80×80
(120,000−80×80) × 1/3 = 0.00199

– Case 2: Three genuine face images in the CAPTCHA 3×80×80
120,000 ×

2×80×80
(120,000−2×80×80) ×

80×80
(120,000−80×80) × 1/3 = 0.00032

– Case 3: Four genuine face images in the CAPTCHA 4×80×80
120,000 ×

3×80×80
120,000−3×80×80 ×

2×80×80
(120,000−2×80×80) ×

80×80
(120,000−80×80) × 1/3 =

0.00006.
The overall probability of a random guess is therefore 0.00237.
However, this calculation only considers the number of genuine
images and does not incorporate incorrect guesses due to fake
face (cartoon) images. The probability will reduce significantly
if we include the incorrect guesses as well. Note that 1

3 is the
probability of guessing the correct number of clicks required for
a particular CAPTCHA with the possible values being {2, 3, 4}.
We have also attempted to break the CAPTCHA with a random
guess based breaking algorithm.However,with over 15hours of
execution on an Intel Core 2 Duo processor running at 2.2 GHz,
none of the 500 CAPTCHAs are successfully broken.

• To weigh against existing CAPTCHA, the average human ac-
curacy of Google’s text CAPTCHA is compared with the pro-
posed FaceDCAPTCHA. With 25 volunteers, this comparison is
performed by randomly downloading 100 Google’s CAPTCHAs
and randomly selecting 100 test FaceDCAPTCHAs. With 250

Table 2
Human performance on combining two distortions.

Distortions Accuracy (%)

Stripes and strikeout 97
Stripes and rotation 100
Stripes and blending (0.5) 99
Stripes and noise 99
Strike-out and rotation 98
Strike-out and blending (0.5) 95
Strike-out and noise 97
Rotation and blending (0.5) 100
Rotation and noise 100
Blending (0.5) and noise 100

responses for both text and face CAPTCHA, the average hu-
man accuracy of FaceDCAPTCHA is 8% better than Google’s
text CAPTCHA. Though this is a very small sample to make
any strong conclusions, the volunteers response suggests that
FaceDCAPTCHA is easier to solve.

• For a FaceDCAPTCHA of size N × M , the complexity of the
proposed algorithm is O(NM). On a 2.2 GHz Core 2 Duo CPU,
the current implementation requires only 10–15ms to generate
a FaceDCAPTCHA, depending on the parameter values (φ̄).
Further, the proposed CAPTCHA algorithm is scalable. We can
use images from several sources, including publicly available
face and fake-face databases. Also, the combination of different
transformations and parameters further increases the number
of CAPTCHAs that can be generated using this algorithm.

• Here we would like to quote a paragraph from Datta et al. [22],
‘‘As reported recently [32], humans are being used to solve
them, either in a well-organized manner commercially (in low
labor cost regions), or by the use of games and other methods
whereby humans are unaware that their responses are being
used for malicious purposes. These attempts make it futile to
create harder AI problems, because in principle, a CAPTCHA should
be solvable by virtually all humans, regardless of their intent.
Nonetheless, CAPTCHAs are and will continue to remain deployed
until alternate, unbreakable, human identity verification methods
become practical. Till then, they should, at the very least, serve to
impede the intensity of human-guided breaking of CAPTCHAs’’.

Similar to Datta et al., we also agree that CAPTCHAs are
intended for humans to solve and any human in the loop attack
may break any CAPTCHA, including the proposed one. Since
the FaceDCAPTCHA generation process involves (i) randomly
choosing genuine and fake face images, (ii) applying distortions,
and (iii) generating random background using the constituent
images, we believe that it may be challenging to break
FaceDCAPTCHA.

4. Conclusion

This paper presents the FaceDCAPTCHA1 algorithm that utilizes
the difference between face detection capabilities of humans and
automated algorithms. By combining face detection with visual
distortions optimized through a training–testing process, it is
possible to create a test that is simple for human users to solve
while effectively eliminating automated attacks. The proposed
methodology offers major benefits over traditional text-based
CAPTCHAs, most notably language independence.

1 http://research.iiitd.edu.in/groups/iab/facedcaptcha.html

http://research.iiitd.edu.in/groups/iab/facedcaptcha.html

8 G. Goswami et al. / Future Generation Computer Systems () –

By incorporating the proposed FaceDCAPTCHA into existing on-
line authentication schemes, developers can substantially reduce
the likelihood of credentials-based attacks. In requiring users to
solve the CAPTCHA in addition to providing a username and pass-
word, an additional dimension of complexity can be added that re-
quires human effort. The FaceDCAPTCHA’s point-and-click-based
implementation adds this additional stage with minimum diffi-
culty for users. It can be readily used on mobile devices since it
has no language requirements and does not require a keyboard for
data entry.

Appendix

A.1. FaceDCAPTCHA algorithm

Algorithm 1 CreateCaptcha(φ)

Input: φ ∈ {ntotal, nface, nfake, B, (x, y), T1, T2, Θ, Sb, ns}.
Process: Initializentotal andnface. For representation,φ is used as a common
parameter set for all the functions. However, when a function is invoked,
only relevant parameters are passed.
G = init_grids(ntotal) /*Initializes the set of grids (each grid has top-
left corner coordinates and height, width) based on the number of grids
needed on a 400 × 300 image */
S = SelectFiles(φ) (Algorithm 2) /* Select files associated to face and fake
images */
r = Random(0, 2) /* Generate a random number within the given limits */
C = newImage(400, 300) /* Workspace for generating CAPTCHA C */
if (r = 0) then

C = Background1(φ) (Algorithm 3) /*Background generation - Random
portions approach */
else

C = Background2(φ) (Algorithm 4) /*Background generation - Random
colors approach */
while S ≠ null do
i = Random(0, ntotal)
I = S[i]
I = Stripes(I, φ) (Algorithm 5) /* Stripes in the constituent face */
I = Strikeout(I, φ) (Algorithm 6) /*Strikeout key facial facial regions */
I = Rotate(I, θi) /* Rotate the image */
j = Random(0, ntotal)
x = G[j].x + Random(0, width(G[j]) − width(I))
y = G[j].y + Random(0, height(G[j]) − height(I))
C = Blend(C, I, x, y, φ) /* Smoothly blends the constituent face and fake

face images with the background using blending strength sb */
end
C = noise(C, φ) (Algorithm 7) /* Adding noise to the CAPTCHA */
return C
Output: The CAPTCHA image C containing ntotal images out of which nface

are genuine faces.

Algorithm 2 SelectFiles(DBface,DBfake, ntotal,nface)

Input: DBface denotes the set of all genuine face images. DBfake denotes
the set of all the fake face (cartoon) images. ntotal is the total number of
images in the CAPTCHA and nface is the number of genuine human faces in
the CAPTCHA.
Process: S = new List(ntotal)
for k = 1 to nface do
i = random(0, size(DBface))
add DBface[i] to S

for k = 1 to (ntotal − nface) do
i = random(0, size(DBfake))
add DBfake[i] to S

return S

Algorithm 3 Background1(ns, nd, np, I,M,N,Mp,Np)

Input: ns denotes the number of shapes to be generated for the
background. nd denotes the number of dilations to be applied to the
background image after generation. np denotes the number of random
portions to be placed. I denotes a face image. M,N is the size of the
CAPTCHA for which the background has to be generated andMp,Np is the
size of a random portion.
Process: B = newImage(M,N)
for k = 1 to ns do

c = random()
Sp = Shape(c) /* Shape(c) is a method that generates a randomly sized

shape with color c */
xr = random(0,M)
yr = random(0,N)
for x = 0 to width(Sp) do

for y = 0 to height(Sp) do
B(x + xr , y + yr) = Sp(x, y)

for k = 1 to np do
xr = random(0, width(I))
yr = random(0, height(I))
P = newImage(Mp,Np)
for x = 0 to Mp do

for y = 0 to Np do
P(x, y) = I(x + xr , y + yr)

for k = 1 to np do
xr = random(0,M)
yr = random(0,N)
blend(B, P, xr , yr)

return B
Output: The background image B.

Algorithm 4 Background2(ns, nd, I,M,N)

Input: ns denotes the number of shapes to be generated for the
background. nd denotes the number of dilations to be applied to the
background image after generation. I denotes a face image and M,N is
the size of the CAPTCHA for which the background has to be generated.
Process: B = newImage(M,N)
for k = 1 to ns do

xr = random(0, width(I))
yr = random(0, height(I))
c = I(xr , yr)
Sp = Shape(c) /* Shape(c) is a method that generates a randomly sized

shape with color c */
xr = random(0,M)
yr = random(0,N)
for x = 0 to width(Sp) do

for y = 0 to height(Sp) do
B(x + xr , y + yr) = Sp(x, y)

B = Dilate(B, nd)
return B
Output: The background image B.

Algorithm 5 Stripes(I, T1)

Input: I is the input image on which the stripes effect is to be applied.
Parameter T1 consists of hmin and hmax, the lower and upper bounds for
the height of one stripe respectively, worig and wstr , the weights assigned
to actual image pixel and cstripes colored pixel respectively when taking the
weighted average for the final output pixel, and f, the spacing between
consecutive stripes (represented as a fraction of the image height, e.g. 20
means the space between two consecutive stripes in an image of height h
would be h/20) and cstripes is the color of the stripes.
Process: for y = height(I)/f to height(I) do

h = random(hmin, hmax)
for i = y to (y + h) do

for j = 0 to width(I) do
I(j, i) = worig ∗ I(j, i) + wstr ∗ cstripes

y = y + h + height(I)/f
return I
Output: The output image I with stripes effect applied.

G. Goswami et al. / Future Generation Computer Systems () – 9

Algorithm 6 Strikeout(I, T2)

Input: I denotes the input face image. T2 contains cstrike: the color of the
strikeout strips, worig and wstr : the weights assigned to actual image pixel,
and cstrike: colored pixel respectivelywhen taking theweighted average for
the final output pixel.
Process: result = detectEyePair(I) /* Result contains the pixels belonging
to the detected eye pair (which is a subset of the pixels of I). If more than
one pair of eyes is detected then we take just the first eye pair */
if (result ≠ null) then
for each pixel in result do

pixel = pixel*worig + cstrike ∗ wstr
else

result = detectMouth(I) /* Result contains the pixels belonging to the
detected mouth (which is a subset of the pixels of I). If more than one
mouth is detected then we take just the first mouth */
if result ≠ null then
for each pixel in result do
pixel = pixel*worig + cstrike ∗ wstr

return I
Output: The input image I with the strikeouts applied on detected eye pair
or mouth.

Algorithm 7 Noise(C,ns)

Input: C is the input imagewhich has to be imbuedwith noise.ns contains
nmin and nmax which denote the minimum and the maximum percentage
of image pixels for application of noise effect respectively, and typewhich
denotes the type of noise to be applied (additive, multiplicative or salt and
pepper).
Process: nperc = random(nmin, nmax)

npixels =
(nperc∗total pixels in I)

100
for k = 1 to npixels do
xr = random(0, width(C))
yr = random(0, height(C))
if (type = addictive) then
add additive noise to C(xr , yr)

if (type = multiplicative) then
add multiplicative noise to C(xr , yr)

if (type = salt&pepper) then
add salt and pepper noise to C(xr , yr)

return I
Output: Image C with added noise.

Algorithm 8 CAPTCHA_Break
Input: The CAPTCHA Image to break, C , the number of genuine face images
in the CAPTCHA, nface, and the set of coordinates of genuine face images for
the particular CAPTCHA, (X, Y).
Process: CAPTCHA_Break = false

result = detectHaarCascade() /* OpenCV’s Haar face detector used as
an adversary */
for each point in result do

if point lies in (X, Y) then
Ccorrect + +;

if Ccorrect == nface then
CAPTCHA_break = True;

Output: CAPTCHA break: True/False

References
[1] S. Shirali-Shahreza, M.H. Shirali-Shahreza, Bibliography of works done on

CAPTCHA, in: Proceedings of the 3rd International Conference on Intelligent
System and Knowledge Engineering, 2008, vol. 1, pp. 205–210.

[2] J. Mirkovic, P. Reiher, A taxonomy of ddos attack and ddos defense
mechanisms, ACM SIGCOMMComputer Communication Review 34 (2) (2004)
39–53.

[3] K.A. Kluever, Evaluating the usability and security of a video CAPTCHA,
Master’s Thesis, Rochester Institute of Technology, 2008.

[4] H.S. Baird, K. Popat, Human interactive proofs and document image analysis,
in: Document Analysis Systems, 2002, pp. 531–537.

[5] G. Mori, J. Malik, Recognizing objects in adversarial clutter: breaking a
visual CAPTCHA, in: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003, vol. 1, pp. 134–141.

[6] G. Moy, N. Jones, C. Harkless, R. Potter, Distortion estimation techniques
in solving visual CAPTCHAs, in: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2004, vol. 2, pp.
23–28.

[7] H.S. Baird, T. Riopka, Scattertype: a reading CAPTCHA resistant to segmenta-
tion attack, in: Proceedings of the SPIE Conference on Document Recognition
and Retrieval, 2005, pp. 16–20.

[8] A.S. El Ahmad, J. Yan, L. Marshall, The robustness of a new CAPTCHA,
in: Proceedings of the 3rd European Workshop on System Security, 2010,
pp. 36–41.

[9] J. Yan, A.S. El Ahmad, A low-cost attack on a Microsoft CAPTCHA, in:
Proceedings of the 15th ACM Conference on Computer and Communications
Security, 2008, pp. 543–554.

[10] P.S. Richard, R. Szeliski, J. Benaloh, J. Couvreur, I. Calinov, Using character
recognition and segmentation to tell computer from humans, in: Proceedings
of the IAPR International Conference on Document Analysis and Recognition,
2003, pp. 418–423.

[11] M. Chew, H.S. Baird, Baffletext: a human interactive proof, in: Proceedings of
the Document Recognition and Retrieval, 2003, pp. 305–316.

[12] L. vonAhn, B.Maurer, C.McMillen, D. Abraham,M. Blum, ReCAPTCHA: human-
based character recognition via web security measures, Science 321 (2008)
1465–1468.

[13] A. Rusu, V. Govindaraju, Handwritten CAPTCHA: using the difference in
the abilities of humans and machines in reading handwritten words, in:
Proceedings of the 9th International Workshop on Frontiers in Handwriting
Recognition, 2004, pp. 226–231.

[14] P. Baecher, N. Buscher, M. Fischlin, B. Milde, Breaking reCAPTCHA: a holistic
approach via shape recognition, Future Challenges in Security and Privacy for
Academia and Industry 354 (2011) 56–67.

[15] J. Yan, A.S. El Ahmad, Usability of CAPTCHAs or usability issues in CAPTCHA
design, in: Proceedings of the 4th Symposium on Usable Privacy and Security,
2008, pp. 44–52.

[16] The official CAPTCHA site, http://www.captcha.net.
[17] ESP-pix, Carnegie Mellon University, http://www.captcha.net.
[18] O. Warner, The cutest human-test: Kittenauth,

http://thepcspy.com/read/the_cutest_humantest_kittenauth/.
[19] J. Elson, J.R. Douceur, J. Howell, J. Saul, Asirra: a CAPTCHA that exploits interest-

aligned manual image categorization, in: Proceedings of the 14th ACM
Conference on Computer and Communications Security, 2007, pp. 366–374.

[20] P. Golle, Machine learning attacks against the Asirra CAPTCHA, in: Proceedings
of the 15thACMConference onComputer andCommunications Security, 2008,
pp. 535–542.

[21] A. Basso, S. Sicco, Preventing massive automated access to web resources,
Computers and Security 28 (3–4) (2009) 174–188.

[22] R. Datta, J. Li, J.Z. Wang, Exploiting the human–machine gap in image
recognition for designing CAPTCHA, IEEE Transactions on Information
Forensics and Security 4 (2009) 504–518.

[23] K.A. Kluever, R. Zanibbi, Balancing usability and security in a video CAPTCHA,
in: Proceedings of the 5th Symposium on Usable Privacy and Security, 2009,
pp. 14:1–14:11.

[24] J. Tam, J. Simsa, S. Hyde, L. von Ahn, Breaking audio CAPTCHAs, in: Proceedings
of the Neural Information Processing Systems, 2008, pp. 1625–1632.

[25] E. Bursztein, S. Bethard, DeCAPTCHA: breaking 75% of ebay audio CAPTCHAs,
in: Proceedings of the 3rd USENIX Conference on Offensive Technologies,
2009.

[26] R. Santamarta, Breaking gmail’s audio CAPTCHA, http://blog.wintercore.com/?
m=200803.

[27] B.M. Powell, A.C. Day, R. Singh, M. Vatsa, A. Noore, Image-based face
detection CAPTCHA for improved security, International Journal ofMultimedia
Intelligence and Security 1 (2010) 269–284.

[28] R.C. Gonzalez, R.E. Woods, Digital Image Processing (3rd Edition), Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[29] G.B. Huang, M. Ramesh, T. Berg, E. Learned-Miller, Labeled faces in the wild:
a database for studying face recognition in unconstrained environments,
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[30] Y. Rui, Z. Liu, Artifacial: automated reverse Turing test using facial features, in:
Proceedings of the 11th ACM International Conference on Multimedia, 2003,
pp. 295–298.

[31] B.B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, K. Cai, Attacks and design of
image recognition CAPTCHAs, in: Proceedings of the 17th ACM Conference on
Computer and Communications Security, 2010, pp. 187–200.

[32] How CAPTCHA was foiled: are you a man or a mouse?, http://www.guardian.
co.uk/technology/2008/aug/28/internet.captcha.

Gaurav Goswami received his Bachelor in Technology
degree in Information Technology in 2012 from the
Indraprastha Institute of Information Technology (IIIT)
Delhi, India where he is currently pursuing a Ph.D. His
main areas of interest are image processing, computer
vision and their application in biometrics.

http://www.captcha.net
http://www.captcha.net
http://thepcspy.com/read/the_cutest_humantest_kittenauth/
http://blog.wintercore.com/?m=200803
http://blog.wintercore.com/?m=200803
http://blog.wintercore.com/?m=200803
http://blog.wintercore.com/?m=200803
http://blog.wintercore.com/?m=200803
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha
http://www.guardian.co.uk/technology/2008/aug/28/internet.captcha

10 G. Goswami et al. / Future Generation Computer Systems () –

Brian M. Powell received his M.S. in Computer Science
fromWest Virginia University, USA in 2006. He is currently
a Doctoral student in the Lane Department of Computer
Science and Electrical Engineering at West Virginia
University. His areas of interest are human interactive
proofs, human computation, user interface design and
computer science education. He is a member of the IEEE,
Computer Society and the Association for Computing
Machinery. He is also a member of the Phi Kappa Phi,
Upsilon Pi Epsilon and Sigma Zeta honor societies. He was
the recipient of the West Virginia University Foundation

Distinguished Doctoral Fellowship.

Mayank Vatsa received his M.S. and Ph.D. degrees
in computer science in 2005 and 2008, respectively
from West Virginia University, Morgantown, USA. He
is currently an Assistant Professor at the Indraprastha
Institute of Information Technology (IIIT) Delhi, India. He
has more than 100 publications in refereed journals, book
chapters, and conferences. His research has been funded
by the UIDAI and DIT. He is the recipient of FAST award
by DST, India. His areas of interest are biometrics, image
processing, computer vision, and information fusion. Dr.
Vatsa is a member of the IEEE, Computer Society and

Association for Computing Machinery. He is also a member of the Golden Key
International, Phi Kappa Phi, Tau Beta Pi, Sigma Xi, Upsilon Pi Epsilon, and Eta
Kappa Nu honor societies. He is the recipient of 11 best paper and best poster
awards in international conferences. He is also an area editor of IEEE Biometric
Compendium.

Richa Singh received her M.S. and Ph.D. degrees in
computer science in 2005 and 2008, respectively from
West Virginia University, Morgantown, USA. She is
currently an Assistant Professor at the Indraprastha
Institute of Information Technology (IIIT) Delhi, India. Her
research has been funded by the UIDAI and DIT, India. She
is a recipient of FAST award by DST, India. Her areas of
interest are biometrics, pattern recognition, and machine
learning. She has more than 100 publications in refereed
journals, book chapters, and conferences. She is also an
editorial board member of Information Fusion, Elsevier.

Dr. Singh is a member of the CDEFFS, IEEE, Computer Society and the Association
for ComputingMachinery. She is also amember of the Golden Key International, Phi
Kappa Phi, Tau Beta Pi, Upsilon Pi Epsilon, and Eta Kappa Nu honor societies. She is
the recipient of 11 best paper and best poster awards in international conferences.

Afzel Noore received his Ph.D. in Electrical Engineering
from West Virginia University, USA. He was a Digital De-
sign Engineer with Philips, India. From 1996 to 2003, he
was the Associate Dean for Academic Affairs and Special
Assistant to the Dean in the College of Engineering and
Mineral Resources, West Virginia University. He is cur-
rently a Professor in the Lane Department of Computer
Science and Electrical Engineering. His research interests
include CAPTCHA based security, computational intelli-
gence, biometrics, software reliability modeling, machine
learning, hardware description languages and quantum

computing. His researchhas been fundedbyNASA, theNational Science Foundation,
Westinghouse, General Electric, Electric Power Research Institute, the US Depart-
ment of Energy, the US Department of Justice and the Army Research Lab. He serves
on the Editorial Boards of Recent Patents on Engineering, the Open Nanoscience
Journal and the International Journal of Multimedia Intelligence and Security. He
has over 100 publications in refereed journals, book chapters and conferences. He
has received several outstanding teacher and outstanding researcher awards. He is
a Senior Member of the IEEE and member of Phi Kappa Phi, Sigma Xi, Eta Kappa
Nu and Tau Beta Pi honor societies. He is the recipient of seven best paper and best
poster awards in international conferences.

	FaceDCAPTCHA: Face detection based color image CAPTCHA
	Introduction
	Research contributions

	The proposed FaceDCAPTCHA algorithm
	Generating FaceDCAPTCHA
	Implementation details

	Experimental results and analysis
	Database and protocol
	Analysis

	Conclusion
	Appendix
	FaceDCAPTCHA algorithm

	References

